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Scientific testing including stable isotope ratio analysis (SIRA) and trace
element analysis (TEA) is critical for establishing plant origin, tackling
deforestation and enforcing economic sanctions. Yet methods combining
SIRA and TEA into robust models for origin verification and determination
arelacking. Here we report a (1) large Eastern European timber reference
database (Betula, Fagus, Pinus, Quercus) tailored to sanctioned products
following the Ukraine invasion; (2) statistical test to verify samples against a
claimed origin; (3) probabilistic model of SIRA, TEA and genus distribution
data, using Gaussian processes, to determine timber harvest location. Our
verification method rejects 40-60% of simulated false claims, depending
on the spatial scale of the claim, and maintains a low probability of rejecting
correct origin claims. Our determination method predicts harvest location
within 180 to 230 km of true location. Our results showcase the power of
combining data types with probabilistic modelling to identify and scrutinize

timber harvest location claims.

Russia’s invasion of Ukraine sparked global responses designed to
penalize Russia and thwart continuing aggression. The UK and the
European Unionannounced economic sanctions packages, includinga
banonthe directimports of wood products from Russiaand Belarus'*.
The USAincreased tariffs onwood imports fromboth countries (https://
hts.usitc.gov). These interventions, combined with bans by the Forest
Stewardship Council and the Programme for the Endorsement of Forest
Certification®*, transformed timber products harvested in Russia and
Belarus into ‘conflict timber’ in western markets’.

Companies operating in the UK, European Union and USA have
long relied on timber imports from Russia and Belarus, particularly
birch (Betula spp.), for construction®. By weight, 12% of all European
Union 2021 wood product imports under Chapter 44 of the Har-
monized Tariff Schedule were imported from Russia and Belarus

(https://ec.europa.eu/eurostat/comext/newxtweb/). While there
is emerging evidence of companies seeking replacement markets,
demand for birch, beech (Fagus spp.), pine (Pinus spp.) and oak
(Quercus spp.) products remains high®. As a result, there has been a
riseintrade through secondary markets, suggesting efforts to disguise
origin (location of harvest) to evade sanctions or tariffs°.

Origin misdeclaration undermines the policy intent of sanctions/
tariffs but also violates existing environmental laws, including the
European Union Timber Regulation and UK Timber Regulation™.
Enforcement officials implementing both timber import regulations
and sanctions need scientific tools to interrogate location of harvest
claims (national, sub-national or even concession level). Checking
timber harvest location claims canbe done in two ways: (1) verification,
anassessmentbased onreasonable doubt over the claimed origin (for
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example, ‘Can this wood sample originate from this location?’) or (2)
determination, where the harvest location is predicted without tak-
ing into account a priori information (‘Where does this wood sample
originate from?’)°. For verification, a robust dataset from the claimed
origin is needed, while for determination, a much larger geographic
range and data set are required.

One of the most widely used scientific techniques for origin deter-
mination, stable isotope ratio analysis (SIRA), measures ratios of natu-
rally occurring stable isotopes which vary predictably across space,
in correlation with environmental conditions'*™. Although SIRA has
been successful in origin prediction, its wider applicability is limited
by the lack of (1) extensive reference data and (2) resolving power at
small spatial scales'. Trace element analysis (TEA) has been proposed
asanalternative®, asthe trace element composition of forest biomass
reflects the bio-available and mobilized macro- and micro-nutrients
present in soils', providing a spatial signal to trace timber back to
harvest location. Empirical studies performed in Africa and Borneo
differentiated timber from country or cluster/site level origins based
onTEA™®Y,

Studies using SIRA or TEA to address timber origin queries have
framed the determination problem as a classification task’>'*'*, wherein
the objective is predicting the origin of a sample from a finite set of
defined locations. While this approach may yield satisfactory results
inscenarios with limited spatial range, itintroduces several challenges
once therange ofinterest expands. Theseinclude increasing complex-
ity of the classification problem and a potential loss in predictive accu-
racy due to arbitrarily defined populations and unaccounted spatial
structure. Creating atool for real-world application, which can address
changing rates of deforestation, illegal logging or conflict across a
region, necessitates models that are designed to adapt to new scales
and enforcement challenges built on broad sampling methodologies,
which capture changing signals across large continuous areas regard-
less of nation state borders or other arbitrarily defined locations.

Wetherefore propose aframework for the verification and deter-
mination of harvest location based on Gaussian process (GP) regres-
sion. GPregression models use values insampled locations to estimate
valuesinsurroundinglocations', allowing us to consider alarge contin-
uousarea. GP models estimate the covariance between measurements
as a function of the distance between locations at which they were
taken. This allows deriving the probability of observing a specific meas-
urement at any location in the study area, in a way that accounts for
varying levels of prediction uncertainty. We use those probabilities to
perform Bayesian inference of possible harvest locations. Our method
extends our recent approach® by both incorporating trace elements
and allowing verification testing (see Fig. 1 for a general overview).

We apply this framework on a large-scale data set, consisting of
929 timber reference samples of 4 genera across 11 Eastern European
countries (Table1). Specifically, we (1) combine trace element (TE) and
stableisotope ratio (SIR) data obtained from wood samples to perform
verification and determination; (2) develop astatistical test to verify a
sample against a claimed origin on different spatial scales, taking into
accountspatial dependency; (3) take a probabilistic approach to spatial
modelling of SIR and TE data using GPs to determine harvestlocation;
(4) incorporate prior information based on genus distribution; and (5)
determine which SIRand TE are most important for determining loca-
tion. The presented framework can be applied to both enforce sanc-
tions/tariffs and to scrutinize harvest location claims under European
Union Timber Regulation, UK Timber Regulation and the European
Union Deforestation Regulation (EUDR).

Results

Verification

Our statistical verification method combines SIR and TE dataand takes
into account every potential harvest location within an origin claim
(country, region, plot...). For every potential location, we compute the

normalized residuals of SIRand TE values observed in the test sample.
We then perform a x? test on the sum of squared residuals and report
the maximum of the Pvalues for all locations; see Methods for details.

Figure 2a shows the accuracy of these models on test samples
stratified by country, focusing on Betula as this genus is considered
the main risk under conflict timber. The specificity (the probability
of not rejecting a correct origin claim) is close to the intended level
of 0.95 for all countries except Hungary. This may be due to the more
limited sample numbers (10) obtained from Hungary. Sensitivity (the
probability of rejecting an incorrect origin claim) is much lower for
the TEA-based model than for models involving SIR data, possibly as a
result of short autocorrelation ranges in many of the TEs.

The addition of TEdatato the SIR-based model does notlead toan
overallimprovementinany of the metrics, in contrast to our determi-
nation method (see ‘Determination’). We observed large differences
in sensitivities across origin countries and data types used, with the
highest for samples from Finland analysed with SIRA (81%) and the
lowest for samples from Slovakia analysed with TEA (2.1%). Fig. 2b
shows the fraction of accurate responses achieved by the combined
SIRA + TEAmodelfor every combination of declared and true country
of origin. The main diagonal shows specificities for every country, while
the off-diagonal shows the sensitivities for specific misdeclaration
scenarios. We see large differencesin sensitivities between misdeclara-
tion scenarios. Sensitivity tends to be low when samples are declared
coming froma neighbouring country (for example, Ukraine declared
as Romania) or whensituated at similar latitudes (for example, Croatia
declared as Ukraine).

Conversely, the verification test shows high sensitivity when a
sampleis misdeclared as coming from adistant country (for example,
Russia declared as Slovakia) or when alarge latitude difference exists
between countries (for example, Finland declared as Latvia). Samples
from Finland appear to be the most distinct from other locations, fol-
lowed by Estonia and Russia. A hierarchical clustering analysis reveals
two major clusters of countries that are clearly distinguishable from
eachother, withFinland, Estonia, Russia and Latvia forming one of the
clusters, while the other consists of the remaining countries except
Hungary as a possible outlier (Fig. 2b).

The sensitivity of the verification test increases when more pre-
cise harvestlocation claims are available (Section1in Supplementary
Information), which will be a requirement under EUDR. The average
sensitivity increases from40%to 52% when level-1administrative units
arethedeclared harvestlocations. For 0.25° x 0.25° concession harvest
claims, the sensitivity increases to 60%. For samples from Russia, sen-
sitivity increased from 59% at country level to 82% at concession level.
Thisisaccompanied by aslight decrease of specificity from 96%to 90%.
Theincorrect harvest locations claims were more likely to be rejected
ifthey were made inareas where training samples were available to our
model; whenincorrect claims were simulated only within level-1units
whereatleast one samplehasbeen collected, the sensitivity rose to 58%
for level-1 declared locations and 67% for 0.25° x 0.25° concessions.
Thissuggests that the accuracy of our verification test mightimprove
with additional sampling.

Determination
Our determination algorithm uses the trained GP regression models
to compute the likelihood of observing the test sample at every loca-
tionwithin the study area. We then use Bayes’ theorem to compute the
probability of each possible location; see Methods for more details.
Table 2 shows the average and standard deviation of the
great-circle distances between predicted and true origins, obtained
after fourfold cross-validation on the reference data for each genus
based onSIR dataonly, TEdataonly and acombination of the two data
types (SIR + TE). Combining both data types leads to a considerable
reductionintheaverage great-circle distance between actual location
and thelocation deemed most likely by the model. The determination
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Table 1| Country origins of the 929 reference samples used
in this work

Country Genus

Betula Fagus Pinus Quercus
Belarus 20 0 0 10
Croatia 20 60 30 57
Estonia 50 0 0 10
Finland 30 (o] 36 0
Hungary 10 16 13 49
Latvia 56 0 0 4
Lithuania 0 0 65 34
Moldova 0 0 0 51
Romania 12 35 0] 10
Russia 24 0 0 0
Slovakia 20 20
Ukraine 60 88 30 0

model for Fagus has the lowest average distance compared to the
other determination models due to the smaller sampling area for this
genus. For Betula, on average, the model predicts 228.64 km from the
true timber harvestlocation, given SIR + TE data. TE-based models for
Betula, Quercus and Pinus performed worse compared to the models
based on SIRA alone.

Theaccuracy of the determination modelis visualized in the deter-
mination maps for Betula, Fagus, Quercus and Pinus (Figs. 3 and 4). For
most cases, the predicted location (blue) is close to the true location
of test samples (red cross). The confidence regions appear smaller
for the determination model trained on the reference data for Fagus
due to a smaller reference data sampling area for Fagus and smaller
genus range inside the study area. In the right column, we present the
uncertainty maps that show the reference data (black dots) utilized for
training, alongside the uncertainty associated with each determination
model. These visual aids are valuable for discerning areas where the
determination model shows uncertainty and thus provide guidance
for future data collection efforts. As demonstrated, Bayesian inference
ontop of GPregression allows for reliable and accurate determination.

InFigs. 5 and 6 we present Shapley additive explanations (SHAP)
beeswarm plots for latitude (left) and longitude (right) for Betula,
Fagus, Quercus and Pinus. The feature value on the y axis corresponds
to the measured value for a particular variable. The SHAP value on
the x axis corresponds to the impact on the model output. A positive/
negative SHAP value indicates an increasing/decreasing effect on
the latitude or longitude prediction (that is, results in a higher/lower
predicted longitude or latitude). Variables on the y axis are sorted in
decreasing order of average absolute SHAP value and represents the
average impact across all samples: the higher that value, the more
important the variable in question. It is clear that both §°H and 60
have a large impact on latitude, given the determination model for
Betula, Quercus and Pinus. In particular, isotope ratios are on average
higher for timber samples that originate from the southern part of the
study area. 5°C has alarge impact on latitude for Fagus and longitude
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Fig. 2| Verification test results. a, Accuracy of verification tests in Betula for
countries in the study area using SIR, TE or both. Specificity is the fraction

of samples with correct origin claims that were not rejected. Sensitivity is

the fraction of samples with incorrect origin claims that were rejected. b, A
clustered heat map of SIRA + TEA verification accuracies for all combinations
of true (columns) and declared (rows) origins. The values on the main diagonal
are specificities as the declared origin is correct. The values outside the main
diagonal are sensitivities as the declared originis incorrect. Average linkage
clustering was performed using average of accuracies in both directions as the
distance measure.

for Quercus. Our TEA models, including the SHAP beeswarm plots,
indicate that chlorine (Cl), nitrogen (N), calcium (Ca), nickel (Ni), iron
(Fe), lead (Pb), rubidium (Rb), silicon (Si), strontium (Sr) and zinc (Zn)
play crucial roles in determining timber harvest location.

Discussion

Current modelling practices for the use of SIRA and TEA to verify and
determine timber harvest location are limited in statistical power, spa-
tial resolution, number of datatypes considered or number of reference
samplesincluded in the model. Our framework allows timber harvest
verificationand determination by means of spatial modelling of stable
isotope and trace element datavia GPs, while taking into account genus
distribution. GP models have been used by others to derive variance

Table 2 | Average and standard deviation of great-circle
distances (in kilometres) between predicted and true
origins

Genus SIRA TEA SIRA+TEA

Betula 349.31(+25.46) 362.16 (+67.82) 228.64 (£15.49)
Fagus 296.55 (£14.74) 199.82 (+20.58) 179.48 (+19.88)
Quercus 274.91(+25.53) 328.24 (+51.27) 211.03 (+43.15)
Pinus 266.45 (+42.03) 386.23 (¥107.70) 216.50 (+54.16)

Values obtained after fourfold cross-validation on reference data for three different
determination models: stable isotope ratio data only (SIRA), trace element concentration
data only (TEA) and combination of both data types (SIRA+TEA).

estimates for origin determination in animals?**; however, in our work,
the GP application with probabilisticinterpretation answers both veri-
fication and determination based on a combination of SIRA, TEA and
genus distribution.

A natural first step in solving a timber harvest location question
isto compare the datafrom the test sample to the reference datafrom
the claimed origin (‘verification’). Having samples from every loca-
tion within a species range is difficult, and in some cases only refer-
ence data from the claimed origin can be used to scrutinize a claim.
However, confidently rejecting, for example, a country origin claim
requires that every single possible harvest location within that coun-
try can be rejected. We evaluated tests based on SIRA, TEA and both
datatypes combined. Ourapproach considers every possible harvest
location within a country. The results (Fig. 2) illustrate the potential
of statistical verification methods for tracing conflict timber, while
underscoring the limits of SIRA/TEA-based verification as a tool to
distinguish between relatively close locations. The test becomes more
powerfulwhen considering smaller harvestlocation claims (sensitivity
increased from39.9% on the country level to 59.6% on the 0.25° x 0.25°
concessions level; Supplementary Fig.1), whichisto be expected asless
surface areaneeds toberejected as potential origin. This proves espe-
cially powerful considering the newly adopted EUDR, which requires
operators to report plot Global Positioning System data or polygon
datawhenintroducing timber to the European Union market.

A morenaive approachto test the hypothesesin equation (1) is to
model samples withina country using a single probability distribution
(for example, multivariate normal) and disregard the spatial hetero-
geneity of samples. While conceptually simpler, such tests are likely to
wrongly reject atest sample originating from a poorly sampled region
or country ¢, especially for large countries with diverse climatic condi-
tions. By contrast, our GP model adjusts for the higher uncertainty in
poorlysampledlocations, which should lead to alower type-lerror rate.

Onelimitation of verification methodsis that they model the distri-
bution of SIRand TE values inside the claimed location of origin, while
essentially disregarding information from other locations. Determina-
tion methods can leverage larger data sets from wider ranges to infer
thelikely harvest location. Elemental tracing outperforms SIRAwhen
looking at finer spatial scales”, and previous work using TEA to trace
timber sample origin could differentiate concessions 50 km apart®.
Our best TEA model has an average error of 199.82 km. It is crucial to
highlight that, unlike in the study by Boeschoten et al.”>, our research
treats the determination problemas aregression problemwithinacon-
tinuous space compared to a classification problem with fixed options.

To identify resolution limits of a continuous space modelling
approach, an understanding of the underlying environmental and
climatic effects is crucial. Hydrogen and oxygen stable isotopes in
plantsoriginate from soil-derived water, and thus from precipitation®,
with two key effects being the latitude and continental effect (Siegwolf
etal." and Gat**). Within the determination model, both §°H and §'°0
have a large impact on latitude. Plant carbon isotope variability is
related toatmospheric carbonisotope composition, and intercellular
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CO, concentration during the growing season strongly affects plant
62C variability'™*. Within our findings, 6°C has a large impact on lati-
tude for Fagus and on longitude for Quercus. The common elements
between our work, Boeschoten et al.” and Rees'® are Ca, Sr and Zn. A
critical distinctionis that our study areaencompassed Eastern Europe,
while Boeschoten et al.” and Rees' focused on Africa. In European
topsoils, the elemental distribution follows geochemical variation
patterns explained by processes occurring at different spatial scales
(Imrie etal.”®) (for acomparison of total versus location variation of key
variables, see Section 3in Supplementary Information). Large autocor-
relation ranges were found for Ni due to mineralization and for Pb due
to anthropogenic pollution, whereas smaller ranges were obtained for
Cu and Zn”. Within our models, Ni appears to be important towards
latitude for Betula and latitude and longitude for Fagus, whereas Zn is
important towards longitude for Pinus. The bioavailability of Ni varies
with pH, organic matter content, clay and iron oxides/hydroxides?*.
Futureresearch should focus onincorporating potential trace element
variability, especially inrelation to the mobilization of trace elements
within trees. Radial patterns of Cd, Pb and Zn concentrations were
detected in Fagus sylvatica stem wood>’; these variations should be
incorporated in future models. In our method, trace element data are
measured on multiple growth rings milled together, and as such obtains
average values and discards any potential temporal or radial variability.

Our pathway allows accurate timber harvest location verification
and determination and provides a tool to scrutinize harvest location
claims. The verification method rejects 40% of false country-level
claims while maintaining alow probability of rejecting correct claims.
The accuracy of detecting false claims improves to 60% when operat-
ing at smaller spatial scales, showing the potential of scrutinizing plot

claims under the EUDR. For samples from Russia and Belarus, our
verification method detects, respectively, 82% and 47% of false claims,
which underscores its potential for enforcing the current sanctions
regime. These numbers are likely to further improve with increased
sampling. Our determination method predicts harvestlocations within
180 to 230 km of the true location, and the 95% confidence regions
overlap country borders in some cases. More reference samples from
sanctioned areas, including central and Eastern Russia, should be col-
lected. By calculating SHAP values, we identify SIR and/or TE values
with the most influence on latitude and longitude prediction. This
aids in feature selection, model simplification and gaining deeper
insights to the underlying relationships between stable isotopes and
trace elements in timber harvest location. Future work should focus
onincorporating potential trace element variability within wood and
filling in data gaps by sampling across species ranges.

Methods

Sample collection and measurements

A total of 7903 pith-to-bark samples were collected by Preferred by
Nature from 3,867 trees, from 24 temperate species from 11 coun-
tries (Belarus, Croatia, Estonia, Finland, Hungary, Latvia, Lithuania,
Moldova, Romania, Slovakia and Ukraine). We consider alarger study
areaandsampling strategy, allowing to capture more climatic variability.
For each species, within each country, three trees were sampled within
anareaof 50 km; the next set of three trees wasthen100t0 250 kmaway,
keeping in mind the species distribution. A subset was chosen based
on priority genera for timber traceability in Eastern Europe (Betula,
Fagus, Pinus and Quercus), and 905 samples were shipped to Agroi-
solabGmbH inJjulich, Germany, for SIRA and TEA (X-ray fluorescence).
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model output. Variables on the y axis are sorted in decreasing order of average
absolute SHAP value and represent the average impact across all test samples: the
higher, the more important the variable in question.

The subset contained Betula pendula, Betula pubescens, Betula sp.,
F. sylvatica, Pinus nigra, Pinus sp., Pinus sylvestris, Quercus petraea,
Quercus pubescens and Quercusrobur.

SIRA for carbon 6"C (ratio between C and '*C), hydrogen 6°H
(ratio between ?H and 'H), nitrogen 6N (ratio between N and *N),
oxygen 60 (ratio between 0 and *0) and sulfur §**S (ratio between
S and *S) was undertaken following the methodology first developed
to check the origin of timber from concessions in Cameroon® and
finalized in the International Tropical Timber Organization projectin
2012 to develop and implement a timber tracking system with stable
isotopes in Africa (ITTO PD 620/11 M). Afterwards, the methods were
used for verifying the origin of oak from the USA*2. The method includes
the measurement of the isotope ratios of covalently bonded hydrogen
after nitrationas well (6°H,,,). Inaddition, ball-milled, oven-dried wood
powder samples were subject to X-ray fluorescence spectroscopy
(XEPOS, SPECTRO analytical instruments) analysis to determine the
relative abundance of 17 trace elements (Al, Si, P, S, CI, K, Ca, Mn, Fe, Ni,
Cu, Zn, Br, Rb, Sr, Baand Pb). The instrument is composed of an X-ray
tube with athick binary Pd/Co alloy anode in combination with adaptive
excitation, resulting in low background and low detection limits. For
sample comparisons, normalized netintensities were used, obtained by
deconvolution fromthe measured spectra. Normalized netintensities
remove influences originating from potentially different calibrations.
Intensities were normalized on a Compton-scatter regionin the spectra
asinternal standard, which results in relative TE concentrations. This
approach corrects for matrix effects as described, for example, by
Anderman and Kemp™. Two scatter regions with different energies
were used as a correction. Scatter region 1(6.75-6.83 keV) was for the
elementsAl, Si, P, S, Cl,Kand Ca, and scatter region 2 (19.71-20.55 keV)

was for the elements Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb. As such,
eachtreesampletherefore generated 23 chemical values tobe analysed
for comparative values at a given Global Positioning System point, rep-
resenting a substantialimprovement in sophistication and robustness
intimber-tracking data sets.

This dataset was supplemented with 24 timber reference samples
from Russia which were collected in previous projects and obtained
through Agroisolab GmbH. The same SIRA and X-ray fluorescence
spectroscopy analysis was performed on these samples.

Data pre-processing

SIR/TE values. For the subsequent data analysis, Mn, Br and Ba were
omitted due to a large proportion of missing values that were intro-
duced by the process outlined in the previous section. Furthermore,
we found that TE values varied across several orders of magnitude
between samples, sowe applied alog transformation on thetraceele-
ment concentrations to stabilize the variance in the data and mitigate
the impact of potential outliers.

Based on the spatial range of our collected samples, we defined a
study area, denoted by x, consisting of coordinates x = (X, Xiac)
(expressedinlongitude and latitude). Itis defined as arectangular grid
consisting of equally spaced locations between 15°and 39.5° longitude
and 46° and 68.3° latitude while taking into account the genus range
of interest (that is, coordinates that are not part of a genus range are
excluded). Genus ranges were extracted from publicly available data
in Caudullo et al.?>*. We chose a resolution of 0.2° (-25 km), which
allowed us to approximate spatial probability distributions with high
accuracy.
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Modelling of stable isotope ratios and trace elements

To tackle verification and determination, we used GP regression to
model the spatial probability distribution of SIR and TE values inside
the study area of interest. GPs are a powerful and flexible class of
probabilistic models used in machine learning and statistics, both for
regression and classification tasks. Inthis work, we used GP regression
to estimate values at unobserved locations based on observations at
nearby locations. Under a GP regression model, values of a variable
measured at different spatial locations are assumed to be jointly nor-
mally distributed, with a covariance function specified by the model.
Thisbears resemblance to kriging, a geostatistical interpolation tech-
nique commonly used in geoscience for spatial analysis®.

We fitted separate models for each genus we analysed. For every
SIR/TE, we trained a GP regression model to predictits expected value
atunobserved spatial locations. Inessence, every GP regression model
consists of three key components: (1) the prior mean function, for
which we assume a constant value; (2) the covariance function, for
which we use the Matérn function' with separate scaling parameters
forlatitude and longitudein the determination model; and (3) the noise
parameter. The selection of mean and covariance functions embodies
our prior knowledge and modelling assumptions regarding the regres-
sion problem. The covariance function defines the similarity between
data points in the spatial domain and allows GPs to capture different
types of complex patterns and relationships in the data.

After training a GP regression model, we can predict the mean and
variance for the jth SIR/TE value at a particular location x, which we
denote by j;(x)and (fj.z(x), respectively. The predicted variance can be
interpreted as the total uncertainty at location x and consists of alea-
toric uncertainty and epistemic uncertainty*®. The former is linked to
inherently randomeffectsin the SIRand TE values. It stems from natural
variability in the data and reflects factors that are beyond our ability
to control. The latter arises due to gaps in our knowledge and under-
standing. Inthe context of our model, it reflects the uncertainty associ-
ated with our limited information about SIR and TE values at different
locations and can be reduced by acquiring more data. For amore formal
discussion about GP regression for spatial modelling, we refer the
reader to Williams and Rasmussen®.

Verification

Ideally, a verification test should have high power in terms of detecting
fraudulent cases while at the same time be reliable, in the sense of hav-
ing a low risk of false accusations. A principled approach, therefore,
consists of designing a statistical hypothesis test that can be used to
answer the following set of hypotheses for anew testsample (y;, ..., y;;,)
of agiven genus with a territorial unit claimc:

Hp : Thetestsample (3}, ..., Jp,)
comes from territorial unit c.

Hy : Thetestsample (3}, ..., Jp,)

does not come from territorial unitc.

Withaterritorial unit considered as any possible spatial scale attached
toaharvestlocation claim (for example, country, region, concession,
plot...), thestatistical hypothesis test should allow the user to control
the typelerror rate by means of the significance level a. It is the prob-
ability of rejecting the null hypothesis H, whenitis true (or the probabil-
ity of making afalse accusation). The significance level allows the user
to define a trade-off between the two important aforementioned cri-
teria, namely, reliability and power: the higher the significance level a,
the lower the reliability, yet the higher the power of the test to detect
fraudulent cases. In this work, we propose a statistical hypothesis test
based on the Gaussian process regression model that was defined in
the previous section. In particular, for a new test sample (v}, ..., y;,) of
agiven genus with territorial unit claim c and corresponding area x,

(subset of study area X consisting of locations in territorial unit c),
we consider acomposite hypothesis test of the form

Hl : _'HO

with V(@ (x), 0}?()()) aGaussiandistribution with mean g;(x)and 6?(x). In
other words, under the null hypothesis, we assume that thejtﬁ ratio
value for the test sample can come from any location in the territorial
unit area X,.. To reject the declared origin, we must thus reject every
location in 2. Furthermore, as we assume independence between
different stable isotopes and trace elements, under H, we have that

m (37 - o)

S =y

po}
j=1 9 ()

is a sum of independent squared standard Gaussian distributions,
which follows a chi-squared distribution with m degrees of freedom
forsome x € x,. As rejecting the null hypothesis amounts torejecting
forevery pointin X, we take amaximum of Pvalues across the claimed
territorial unit area (ref. 37, chap.10):

p = max1 - F(SCO)].

where Fis the cumulative distribution function of a chi-squared distri-
bution with m degrees of freedom.

Determination

In contrastto verificationin the previous section, the goal in determina-
tionis to predict the timber harvest location of anew test sample from
aparticular genus. We propose a Bayesian determination model based
on GP regression. For a test sample y* = (¥}, ...,y;,) and m trained GP
regression models (‘Modelling of stable isotope ratios and trace ele-
ments’), the posterior probability of a location x € xx is calculated by
means of applying Bayes’ rule:

LO* [X0Pr{x]

S £0F PN @

Prix|y*] =

where the likelihood function is given by:

Lo 1x) = [ o051 00, 67(x).
J=1

with ¢(. | a, b) the probability density function of a Gaussian distribu-
tion with mean a and variance b. For the prior distribution Prx], we
consider a uniform prior for locations x € & that are within a range of
300 kmtothereference data, and azero prior elsewhere. The rationale
behind this prior is to restrict determination to regions containing
reference data. The posterior probability in equation (2) denotes the
(posterior) probability that the test sample y* originates from location
x € Xx. After calculating the posterior probability for every locationin
thestudy area xx, wereport the predicted timber harvestlocation and
the 95% confidence region for every test sample y*. The former corre-
sponds to the location with highest posterior probability. The latter
corresponds to the smallest set of locations whose posterior probabil-
ity is at least 95% according to the model. Confidence regions are
equivalent to credible regions in Bayesian statistics and correspond
to regions within which the true location falls with 95% probability*.
Theinterpretationis that thereis a95% probability that the true timber
harvest location lies within the 95% confidence region, given the evi-
dence provided by the observed data. Note that the confidence region
is constructed based on the posterior distributionin equation (2) and
therefore depends on the prior Prx], the likelihood £( y* |x) of the

Nature Plants | Volume 10 | March 2024 | 390-401

398


http://www.nature.com/natureplants

Article

https://doi.org/10.1038/s41477-024-01648-5

observed data and model correctness. To gain further insights in the
95% confidence regions, we have conducted additional experiments
showcasing the efficiency and coverage of the predicted 95% confi-
denceregions, obtained onthetest samples (Section 2 in Supplemen-
tary Information).

To quantify the relative influence of different SIR and TE on the
accuracy of timber harvest location determination, we calculated
SHAP values for the mode of the posterior distributionin equation (2)
(ref. 39). Given SIR and TE values and a determination model (that is,
mode of the posterior distribution), SHAP approximates the determi-
nation model. By means of the approximation, a SHAP value, which
represents the marginal contribution of agiven stableisotope or trace
element value to the output of the determination model, is calculated.
The SHAP valueis analogous to the Shapley value in cooperative game
theory and offersaprincipled approach forinterpreting the contribu-
tion of specific stable isotopes and trace elements for timber harvest
location determination.

Experimental set-up

We trained and validated three different determination models for
every genus by means of fourfold cross-validation on the reference
samples. In particular, we considered determination models based
on (1) SIR data only, (2) TE concentration data only and (3) a combi-
nation of both data types. For every training iteration, we standard-
ized the SIR and/or TE values and estimated the parameters of the GP
regression models, along with the noise parameter, by maximizing
the likelihood on the training fold. This approach stands in contrast
totraditional kriging approachesin the geostatistics literature, which
rely on approximate techniques based on summary statistics. We used
Adam optimization with a learning rate of 0.01 and the Stochastic
Gradient Descent with Warm Restarts scheduler and early stopping
with a patience of five iterations*>*, In terms of performance for all
determination models, we report the average and standard deviation
of the great-circle distance between true and predicted locations,
averaged over all test folds.

In another set of experiments, we highlighted how insights can
be derived from SHAP values regarding the impact of SIR and TE val-
ues on determination. To this extent, we used 80% of the reference
samples for training GP regression models for all SIR and TE values,
asoutlined above. The remaining samples were then used as test sam-
ples for which we constructed determination maps by calculating the
posterior probability in equation (2) for every pointinthe study area.
Forthe sake of interpretation, we report 95% confidence regions, that
is, sets of locations whose total posterior probability exceeds 95%. In
addition, we also present uncertainty maps for all genera by calculat-
ing, for every locationin the study area, the logarithm of the product
of predicted variances for all SIR and TE values (‘Modelling of stable
isotoperatios and trace elements’). When it comes to the SHAP analysis,
we calculated SHAP values on the test set and present beeswarm plots
forevery genus™®.

We used the same cross-validationand grid set-up to evaluate the
performance of our verification procedure. Due to space constraints,
we focus on Betula samples. For every test sample y = (y,, ..., ¥,,) and
every country cinthe study, we tested the hypothesis that y originates
fromc. The set of within-country locations . is defined as the set of all
grid points within country cfor all countries except Russiaand Ukraine,
where we only have samples from several regions. For those countries,
we defined the set of allowed within-country locations as the set of grid
points within the level-1 administrative subdivisions from which we
have samples. For each country, wereport the following: (1) specificity
(the probability of not rejecting a correct origin claim) and (2) sensitiv-
ity (the probability of rejecting an incorrect origin claim). We also
report the overall accuracy for each combination of true and claimed
origin.Inall cases, a claimisrejected whenever the Pvalue is lower than
a=0.05.

To investigate the impact of the scale of claimed locations on
verification accuracy, we repeated the verification analysis at differ-
ent spatial scales (Section 1in Supplementary Information). For each
simulated incorrect country claim, we randomly sampled a location
withinthat country andidentified the territorial unit corresponding to
thelocation. For correct country claims, territorial units corresponding
to the true location were used. We then performed verification tests
at the level of territorial units. Three spatial scales were used: level-1
administrative units and simulated forest concessions of size 0.5° x 0.5°
and 0.25° x 0.25°, respectively. We reported sensitivity and specificity
as in the country-level analysis. All experiments were performed in
Python (version 3.10.9) using the GPyTorch (version 1.10), PyTorch (ver-
sion 1.13.1), Scikit-learn (version 1.2.1), SHAP (version 0.41.0), Skorch
(version 0.12.1) and matplotlib (version 3.5.0) libraries®***¢,

Availability of materials

Thewood samples are part ofthe World Forest ID Georeferenced Sam-
ple Collection. Foraccess enquiries, please contact the corresponding
author.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dueto the sensitive nature of the data, the SIRA and TEA dataare avail-
able uponreasonable request.

Code availability
The code is available upon request at https://zenodo.org/records/
10055203.
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