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A framework for tracing timber following the 
Ukraine invasion

Thomas Mortier1,2,12, Jakub Truszkowski3,4,12, Marigold Norman1, Markus Boner5, 
Bogdan Buliga    6,7, Caspar Chater    8,9, Henry Jennings8, Jade Saunders1, 
Rosie Sibley6, Alexandre Antonelli    3,4,8,10, Willem Waegeman2 & 
Victor Deklerck    1,8,11 

Scientific testing including stable isotope ratio analysis (SIRA) and trace 
element analysis (TEA) is critical for establishing plant origin, tackling 
deforestation and enforcing economic sanctions. Yet methods combining 
SIRA and TEA into robust models for origin verification and determination 
are lacking. Here we report a (1) large Eastern European timber reference 
database (Betula, Fagus, Pinus, Quercus) tailored to sanctioned products 
following the Ukraine invasion; (2) statistical test to verify samples against a 
claimed origin; (3) probabilistic model of SIRA, TEA and genus distribution 
data, using Gaussian processes, to determine timber harvest location. Our 
verification method rejects 40–60% of simulated false claims, depending 
on the spatial scale of the claim, and maintains a low probability of rejecting 
correct origin claims. Our determination method predicts harvest location 
within 180 to 230 km of true location. Our results showcase the power of 
combining data types with probabilistic modelling to identify and scrutinize 
timber harvest location claims.

Russia’s invasion of Ukraine sparked global responses designed to 
penalize Russia and thwart continuing aggression. The UK and the 
European Union announced economic sanctions packages, including a 
ban on the direct imports of wood products from Russia and Belarus1,2. 
The USA increased tariffs on wood imports from both countries (https://
hts.usitc.gov). These interventions, combined with bans by the Forest 
Stewardship Council and the Programme for the Endorsement of Forest 
Certification3,4, transformed timber products harvested in Russia and 
Belarus into ‘conflict timber’ in western markets5.

Companies operating in the UK, European Union and USA have 
long relied on timber imports from Russia and Belarus, particularly 
birch (Betula spp.), for construction6. By weight, 12% of all European 
Union 2021 wood product imports under Chapter 44 of the Har-
monized Tariff Schedule were imported from Russia and Belarus  

(https://ec.europa.eu/eurostat/comext/newxtweb/). While there 
is emerging evidence of companies seeking replacement markets, 
demand for birch, beech (Fagus spp.), pine (Pinus spp.) and oak 
(Quercus spp.) products remains high6. As a result, there has been a 
rise in trade through secondary markets, suggesting efforts to disguise 
origin (location of harvest) to evade sanctions or tariffs6.

Origin misdeclaration undermines the policy intent of sanctions/
tariffs but also violates existing environmental laws, including the 
European Union Timber Regulation and UK Timber Regulation7,8. 
Enforcement officials implementing both timber import regulations 
and sanctions need scientific tools to interrogate location of harvest 
claims (national, sub-national or even concession level). Checking 
timber harvest location claims can be done in two ways: (1) verification, 
an assessment based on reasonable doubt over the claimed origin (for 
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normalized residuals of SIR and TE values observed in the test sample. 
We then perform a χ2 test on the sum of squared residuals and report 
the maximum of the P values for all locations; see Methods for details.

Figure 2a shows the accuracy of these models on test samples 
stratified by country, focusing on Betula as this genus is considered 
the main risk under conflict timber. The specificity (the probability 
of not rejecting a correct origin claim) is close to the intended level 
of 0.95 for all countries except Hungary. This may be due to the more 
limited sample numbers (10) obtained from Hungary. Sensitivity (the 
probability of rejecting an incorrect origin claim) is much lower for 
the TEA-based model than for models involving SIR data, possibly as a 
result of short autocorrelation ranges in many of the TEs.

The addition of TE data to the SIR-based model does not lead to an 
overall improvement in any of the metrics, in contrast to our determi-
nation method (see ‘Determination’). We observed large differences 
in sensitivities across origin countries and data types used, with the 
highest for samples from Finland analysed with SIRA (81%) and the 
lowest for samples from Slovakia analysed with TEA (2.1%). Fig. 2b 
shows the fraction of accurate responses achieved by the combined 
SIRA + TEA model for every combination of declared and true country 
of origin. The main diagonal shows specificities for every country, while 
the off-diagonal shows the sensitivities for specific misdeclaration 
scenarios. We see large differences in sensitivities between misdeclara-
tion scenarios. Sensitivity tends to be low when samples are declared 
coming from a neighbouring country (for example, Ukraine declared 
as Romania) or when situated at similar latitudes (for example, Croatia 
declared as Ukraine).

Conversely, the verification test shows high sensitivity when a 
sample is misdeclared as coming from a distant country (for example, 
Russia declared as Slovakia) or when a large latitude difference exists 
between countries (for example, Finland declared as Latvia). Samples 
from Finland appear to be the most distinct from other locations, fol-
lowed by Estonia and Russia. A hierarchical clustering analysis reveals 
two major clusters of countries that are clearly distinguishable from 
each other, with Finland, Estonia, Russia and Latvia forming one of the 
clusters, while the other consists of the remaining countries except 
Hungary as a possible outlier (Fig. 2b).

The sensitivity of the verification test increases when more pre-
cise harvest location claims are available (Section 1 in Supplementary 
Information), which will be a requirement under EUDR. The average 
sensitivity increases from 40% to 52% when level-1 administrative units 
are the declared harvest locations. For 0.25° × 0.25° concession harvest 
claims, the sensitivity increases to 60%. For samples from Russia, sen-
sitivity increased from 59% at country level to 82% at concession level. 
This is accompanied by a slight decrease of specificity from 96% to 90%. 
The incorrect harvest locations claims were more likely to be rejected 
if they were made in areas where training samples were available to our 
model; when incorrect claims were simulated only within level-1 units 
where at least one sample has been collected, the sensitivity rose to 58% 
for level-1 declared locations and 67% for 0.25° × 0.25° concessions. 
This suggests that the accuracy of our verification test might improve 
with additional sampling.

Determination
Our determination algorithm uses the trained GP regression models 
to compute the likelihood of observing the test sample at every loca-
tion within the study area. We then use Bayes’ theorem to compute the 
probability of each possible location; see Methods for more details.

Table 2 shows the average and standard deviation of the 
great-circle distances between predicted and true origins, obtained 
after fourfold cross-validation on the reference data for each genus 
based on SIR data only, TE data only and a combination of the two data 
types (SIR + TE). Combining both data types leads to a considerable 
reduction in the average great-circle distance between actual location 
and the location deemed most likely by the model. The determination 

example, ‘Can this wood sample originate from this location?’) or (2) 
determination, where the harvest location is predicted without tak-
ing into account a priori information (‘Where does this wood sample 
originate from?’)9. For verification, a robust dataset from the claimed 
origin is needed, while for determination, a much larger geographic 
range and data set are required.

One of the most widely used scientific techniques for origin deter-
mination, stable isotope ratio analysis (SIRA), measures ratios of natu-
rally occurring stable isotopes which vary predictably across space, 
in correlation with environmental conditions10–13. Although SIRA has 
been successful in origin prediction, its wider applicability is limited 
by the lack of (1) extensive reference data and (2) resolving power at 
small spatial scales14. Trace element analysis (TEA) has been proposed 
as an alternative15, as the trace element composition of forest biomass 
reflects the bio-available and mobilized macro- and micro-nutrients 
present in soils16, providing a spatial signal to trace timber back to 
harvest location. Empirical studies performed in Africa and Borneo 
differentiated timber from country or cluster/site level origins based 
on TEA16,17.

Studies using SIRA or TEA to address timber origin queries have 
framed the determination problem as a classification task15,16,18, wherein 
the objective is predicting the origin of a sample from a finite set of 
defined locations. While this approach may yield satisfactory results 
in scenarios with limited spatial range, it introduces several challenges 
once the range of interest expands. These include increasing complex-
ity of the classification problem and a potential loss in predictive accu-
racy due to arbitrarily defined populations and unaccounted spatial 
structure. Creating a tool for real-world application, which can address 
changing rates of deforestation, illegal logging or conflict across a 
region, necessitates models that are designed to adapt to new scales 
and enforcement challenges built on broad sampling methodologies, 
which capture changing signals across large continuous areas regard-
less of nation state borders or other arbitrarily defined locations.

We therefore propose a framework for the verification and deter-
mination of harvest location based on Gaussian process (GP) regres-
sion. GP regression models use values in sampled locations to estimate 
values in surrounding locations19, allowing us to consider a large contin-
uous area. GP models estimate the covariance between measurements 
as a function of the distance between locations at which they were 
taken. This allows deriving the probability of observing a specific meas-
urement at any location in the study area, in a way that accounts for 
varying levels of prediction uncertainty. We use those probabilities to 
perform Bayesian inference of possible harvest locations. Our method 
extends our recent approach20 by both incorporating trace elements 
and allowing verification testing (see Fig. 1 for a general overview).

We apply this framework on a large-scale data set, consisting of 
929 timber reference samples of 4 genera across 11 Eastern European 
countries (Table 1). Specifically, we (1) combine trace element (TE) and 
stable isotope ratio (SIR) data obtained from wood samples to perform 
verification and determination; (2) develop a statistical test to verify a 
sample against a claimed origin on different spatial scales, taking into 
account spatial dependency; (3) take a probabilistic approach to spatial 
modelling of SIR and TE data using GPs to determine harvest location; 
(4) incorporate prior information based on genus distribution; and (5) 
determine which SIR and TE are most important for determining loca-
tion. The presented framework can be applied to both enforce sanc-
tions/tariffs and to scrutinize harvest location claims under European 
Union Timber Regulation, UK Timber Regulation and the European 
Union Deforestation Regulation (EUDR).

Results
Verification
Our statistical verification method combines SIR and TE data and takes 
into account every potential harvest location within an origin claim 
(country, region, plot…). For every potential location, we compute the 
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model for Fagus has the lowest average distance compared to the 
other determination models due to the smaller sampling area for this 
genus. For Betula, on average, the model predicts 228.64 km from the 
true timber harvest location, given SIR + TE data. TE-based models for 
Betula, Quercus and Pinus performed worse compared to the models 
based on SIRA alone.

The accuracy of the determination model is visualized in the deter-
mination maps for Betula, Fagus, Quercus and Pinus (Figs. 3 and 4). For 
most cases, the predicted location (blue) is close to the true location 
of test samples (red cross). The confidence regions appear smaller 
for the determination model trained on the reference data for Fagus 
due to a smaller reference data sampling area for Fagus and smaller 
genus range inside the study area. In the right column, we present the 
uncertainty maps that show the reference data (black dots) utilized for 
training, alongside the uncertainty associated with each determination 
model. These visual aids are valuable for discerning areas where the 
determination model shows uncertainty and thus provide guidance 
for future data collection efforts. As demonstrated, Bayesian inference 
on top of GP regression allows for reliable and accurate determination.

In Figs. 5 and 6 we present Shapley additive explanations (SHAP) 
beeswarm plots for latitude (left) and longitude (right) for Betula, 
Fagus, Quercus and Pinus. The feature value on the y axis corresponds 
to the measured value for a particular variable. The SHAP value on 
the x axis corresponds to the impact on the model output. A positive/
negative SHAP value indicates an increasing/decreasing effect on 
the latitude or longitude prediction (that is, results in a higher/lower 
predicted longitude or latitude). Variables on the y axis are sorted in 
decreasing order of average absolute SHAP value and represents the 
average impact across all samples: the higher that value, the more 
important the variable in question. It is clear that both δ2H and δ18O 
have a large impact on latitude, given the determination model for 
Betula, Quercus and Pinus. In particular, isotope ratios are on average 
higher for timber samples that originate from the southern part of the 
study area. δ13C has a large impact on latitude for Fagus and longitude 
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Fig. 1 | Flowchart illustrating the different steps within the framework. Top 
left: genus distribution included as a prior p(x) in the model. Bottom left: reference 
data as SIR and TE concentrations (y) from wood samples in locations (x).  

Middle: GP calculating the SIR and TE concentrations in each location in the grid 
(p(y ∣ x)). Top right: Bayesian determination model for harvest location. Bottom 
right: verification statistical test to discredit country claims.

Table 1 | Country origins of the 929 reference samples used 
in this work

Country Genus

Betula Fagus Pinus Quercus

Belarus 20 0 0 10

Croatia 20 60 30 57

Estonia 50 0 0 10

Finland 30 0 36 0

Hungary 10 16 13 49

Latvia 56 0 0 4

Lithuania 0 0 65 34

Moldova 0 0 0 51

Romania 12 35 0 10

Russia 24 0 0 0

Slovakia 20 20 0 9

Ukraine 60 88 30 0

http://www.nature.com/natureplants
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for Quercus. Our TEA models, including the SHAP beeswarm plots, 
indicate that chlorine (Cl), nitrogen (N), calcium (Ca), nickel (Ni), iron 
(Fe), lead (Pb), rubidium (Rb), silicon (Si), strontium (Sr) and zinc (Zn) 
play crucial roles in determining timber harvest location.

Discussion
Current modelling practices for the use of SIRA and TEA to verify and 
determine timber harvest location are limited in statistical power, spa-
tial resolution, number of data types considered or number of reference 
samples included in the model. Our framework allows timber harvest 
verification and determination by means of spatial modelling of stable 
isotope and trace element data via GPs, while taking into account genus 
distribution. GP models have been used by others to derive variance 

estimates for origin determination in animals21,22; however, in our work, 
the GP application with probabilistic interpretation answers both veri-
fication and determination based on a combination of SIRA, TEA and 
genus distribution.

A natural first step in solving a timber harvest location question 
is to compare the data from the test sample to the reference data from 
the claimed origin (‘verification’). Having samples from every loca-
tion within a species range is difficult, and in some cases only refer-
ence data from the claimed origin can be used to scrutinize a claim. 
However, confidently rejecting, for example, a country origin claim 
requires that every single possible harvest location within that coun-
try can be rejected. We evaluated tests based on SIRA, TEA and both 
data types combined. Our approach considers every possible harvest 
location within a country. The results (Fig. 2) illustrate the potential 
of statistical verification methods for tracing conflict timber, while 
underscoring the limits of SIRA/TEA-based verification as a tool to 
distinguish between relatively close locations. The test becomes more 
powerful when considering smaller harvest location claims (sensitivity 
increased from 39.9% on the country level to 59.6% on the 0.25° × 0.25° 
concessions level; Supplementary Fig. 1), which is to be expected as less 
surface area needs to be rejected as potential origin. This proves espe-
cially powerful considering the newly adopted EUDR, which requires 
operators to report plot Global Positioning System data or polygon 
data when introducing timber to the European Union market.

A more naive approach to test the hypotheses in equation (1) is to 
model samples within a country using a single probability distribution 
(for example, multivariate normal) and disregard the spatial hetero-
geneity of samples. While conceptually simpler, such tests are likely to 
wrongly reject a test sample originating from a poorly sampled region 
or country c, especially for large countries with diverse climatic condi-
tions. By contrast, our GP model adjusts for the higher uncertainty in 
poorly sampled locations, which should lead to a lower type-I error rate.

One limitation of verification methods is that they model the distri-
bution of SIR and TE values inside the claimed location of origin, while 
essentially disregarding information from other locations. Determina-
tion methods can leverage larger data sets from wider ranges to infer 
the likely harvest location. Elemental tracing outperforms SIRA when 
looking at finer spatial scales15, and previous work using TEA to trace 
timber sample origin could differentiate concessions 50 km apart15. 
Our best TEA model has an average error of 199.82 km. It is crucial to 
highlight that, unlike in the study by Boeschoten et al.15, our research 
treats the determination problem as a regression problem within a con-
tinuous space compared to a classification problem with fixed options.

To identify resolution limits of a continuous space modelling 
approach, an understanding of the underlying environmental and 
climatic effects is crucial. Hydrogen and oxygen stable isotopes in 
plants originate from soil-derived water, and thus from precipitation23, 
with two key effects being the latitude and continental effect (Siegwolf 
et al.11 and Gat24). Within the determination model, both δ2H and δ18O 
have a large impact on latitude. Plant carbon isotope variability is 
related to atmospheric carbon isotope composition, and intercellular 

SIRA

Belarus

a

b

1

0.95

0.96

1

0.56

0.96

1

1

1

0.98

0.94

0.56

0.56

0.56

0.56

0.56

0.56

1

0.67

1

0.78

0.3

1

0.05

0.2

0.2

0.3

0.65

0.15

0.6

0.3

0.083

0.25

0.92

0.083

0.17

0.083

0.92

0.75

0.83

0.58

0.017

0.017

0

1

0

0.017

0.9

0.1

0.7

0.12

0

0

0.05

0

1

0

1

0.3

0.9

0.3

0

0

0

0

0

1

0.95

0.29

0.95

0.38

1

0.87

0.9

1

0.97

1

0.93

0.067

0.4

0.9

0.92

0.17

0.67

0.92

0.62

0.92

0.29

1

0.38

0.46

0.96

0.4

0.46

0.94

0.84

0.96

0.12

0.08

0.96

0.28

0.38

0.11

0.14

0.27

0.16

0.34

0.57

0.18

0.16

0.95

0.28

0.33

0.6

0.81

0.64

0.37

0.31

0.55

0.35

0.31

0.45

0.95

0.95

0.98

0.93

0.67

0.95

0.92

1

1

0.98

0.93

0.18

0.094

0.13

0.16

0.44

0.12

0.18

0.17

0.021

0.028

0.15

1

1

0.96

0.93

0.56

0.95

0.92

1

1

1

0.93

0.31

0.28

0.56

0.79

0.69

0.26

0.42

0.59

0.29

0.21

0.44

Croatia

Estonia

Finland

Tr
ue

 o
rig

in Hungary

Latvia

Romania

Russia

Slovakia

Ukraine

Average

Specific
ity

Sensit
ivi

ty

Specific
ity

Sensit
ivi

ty

Specific
ity

Sensit
ivi

ty

TEA SIRA + TEA

H
un

ga
ry

Be
la

ru
s

Ro
m

an
ia

U
kr

ai
ne

C
ro

at
ia

True origin

Sl
ov

ak
ia

Fi
nl

an
d

Ru
ss

ia

Es
to

ni
a

La
tv

ia

Hungary

Belarus

Romania

Ukraine

Croatia

Slovakia

Finland

D
eclared origin

Russia

Estonia

Latvia

Fig. 2 | Verification test results. a, Accuracy of verification tests in Betula for 
countries in the study area using SIR, TE or both. Specificity is the fraction 
of samples with correct origin claims that were not rejected. Sensitivity is 
the fraction of samples with incorrect origin claims that were rejected. b, A 
clustered heat map of SIRA + TEA verification accuracies for all combinations 
of true (columns) and declared (rows) origins. The values on the main diagonal 
are specificities as the declared origin is correct. The values outside the main 
diagonal are sensitivities as the declared origin is incorrect. Average linkage 
clustering was performed using average of accuracies in both directions as the 
distance measure.

Table 2 | Average and standard deviation of great-circle 
distances (in kilometres) between predicted and true 
origins

Genus SIRA TEA SIRA + TEA

Betula 349.31 (±25.46) 362.16 (±67.82) 228.64 (±15.49)

Fagus 296.55 (±14.74) 199.82 (±20.58) 179.48 (±19.88)

Quercus 274.91 (±25.53) 328.24 (±51.27) 211.03 (±43.15)

Pinus 266.45 (±42.03) 386.23 (±107.70) 216.50 (±54.16)

Values obtained after fourfold cross-validation on reference data for three different 
determination models: stable isotope ratio data only (SIRA), trace element concentration 
data only (TEA) and combination of both data types (SIRA + TEA).
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Fig. 3 | Determination for Betula and Fagus. Determination (left and middle) 
and uncertainty maps (right) for Betula on the first row and for Fagus on the 
last row. For the determination maps: 95% confidence regions are indicated 
in teal, the predicted timber harvest locations are indicated in blue, and the 
true locations of test samples are indicated by a red cross. For the uncertainty 
maps: reference samples in Table 1 are indicated by black circles, and low and 
high uncertainty locations are indicated by green and red, respectively. The 

25th percentile of the uncertainty values serves as a cut-off for low uncertainty 
(green); values below are indicative of low uncertainty. Conversely, the 75th 
percentile of the uncertainty values acts as a cut-off for high uncertainty (red); 
values above are indicative of high uncertainty. The efficiency and coverage for 
Betula and Fagus are 333,006 km2, 92% and 230,274 km2, 90.91%, respectively 
(Section 2 in Supplementary Information).
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Fig. 4 | Determination for Quercus and Pinus. Determination (left and middle) 
and uncertainty maps (right) for Quercus on the first row and for Pinus on the 
last row. For the determination maps: 95% confidence regions are indicated in 
teal, the predicted timber harvest locations are indicated in blue, and the true 
locations of test samples are indicated by a red cross. For the uncertainty maps: 
reference samples in Table 1 are indicated by black circles, and low and high 
uncertainty locations are indicated by green and red, respectively.  

The 25th percentile of the uncertainty values serves as a cut-off for low 
uncertainty (green); values below are indicative of low uncertainty. Conversely, 
the 75th percentile of the uncertainty values acts as a cut-off for high uncertainty 
(red); values above are indicative of high uncertainty. The efficiency and 
coverage for Quercus and Pinus are 429,200 km2, 91.38% and 274,577 km2, 84.09%, 
respectively (Section 2 in Supplementary Information).
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CO2 concentration during the growing season strongly affects plant 
δ13C variability11,25. Within our findings, δ13C has a large impact on lati-
tude for Fagus and on longitude for Quercus. The common elements 
between our work, Boeschoten et al.17 and Rees16 are Ca, Sr and Zn. A 
critical distinction is that our study area encompassed Eastern Europe, 
while Boeschoten et al.17 and Rees16 focused on Africa. In European 
topsoils, the elemental distribution follows geochemical variation 
patterns explained by processes occurring at different spatial scales 
(Imrie et al.26) (for a comparison of total versus location variation of key 
variables, see Section 3 in Supplementary Information). Large autocor-
relation ranges were found for Ni due to mineralization and for Pb due 
to anthropogenic pollution, whereas smaller ranges were obtained for 
Cu and Zn27. Within our models, Ni appears to be important towards 
latitude for Betula and latitude and longitude for Fagus, whereas Zn is 
important towards longitude for Pinus. The bioavailability of Ni varies 
with pH, organic matter content, clay and iron oxides/hydroxides28,29. 
Future research should focus on incorporating potential trace element 
variability, especially in relation to the mobilization of trace elements 
within trees. Radial patterns of Cd, Pb and Zn concentrations were 
detected in Fagus sylvatica stem wood30; these variations should be 
incorporated in future models. In our method, trace element data are 
measured on multiple growth rings milled together, and as such obtains 
average values and discards any potential temporal or radial variability.

Our pathway allows accurate timber harvest location verification 
and determination and provides a tool to scrutinize harvest location 
claims. The verification method rejects 40% of false country-level 
claims while maintaining a low probability of rejecting correct claims. 
The accuracy of detecting false claims improves to 60% when operat-
ing at smaller spatial scales, showing the potential of scrutinizing plot 

claims under the EUDR. For samples from Russia and Belarus, our 
verification method detects, respectively, 82% and 47% of false claims, 
which underscores its potential for enforcing the current sanctions 
regime. These numbers are likely to further improve with increased 
sampling. Our determination method predicts harvest locations within 
180 to 230 km of the true location, and the 95% confidence regions 
overlap country borders in some cases. More reference samples from 
sanctioned areas, including central and Eastern Russia, should be col-
lected. By calculating SHAP values, we identify SIR and/or TE values 
with the most influence on latitude and longitude prediction. This 
aids in feature selection, model simplification and gaining deeper 
insights to the underlying relationships between stable isotopes and 
trace elements in timber harvest location. Future work should focus 
on incorporating potential trace element variability within wood and 
filling in data gaps by sampling across species ranges.

Methods
Sample collection and measurements
A total of 7,903 pith-to-bark samples were collected by Preferred by 
Nature from 3,867 trees, from 24 temperate species from 11 coun-
tries (Belarus, Croatia, Estonia, Finland, Hungary, Latvia, Lithuania,  
Moldova, Romania, Slovakia and Ukraine). We consider a larger study 
area and sampling strategy, allowing to capture more climatic variability. 
For each species, within each country, three trees were sampled within 
an area of 50 km; the next set of three trees was then 100 to 250 km away, 
keeping in mind the species distribution. A subset was chosen based 
on priority genera for timber traceability in Eastern Europe (Betula,  
Fagus, Pinus and Quercus), and 905 samples were shipped to Agroi-
solab GmbH in Julich, Germany, for SIRA and TEA (X-ray fluorescence). 
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Fig. 5 | SHAP’s beeswarm plots for Betula and Fagus. Latitude (left) and 
longitude (right) for Betula on the first row and for Fagus on the last row. The 
feature value on the y axis corresponds to the measured value for a particular 
variable (SIR/TE). The SHAP value on the x axis corresponds to the impact on the 

model output. Variables on the y axis are sorted in decreasing order of average 
absolute SHAP value and represent the average impact across all test samples: the 
higher, the more important the variable in question.
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The subset contained Betula pendula, Betula pubescens, Betula sp.,  
F. sylvatica, Pinus nigra, Pinus sp., Pinus sylvestris, Quercus petraea, 
Quercus pubescens and Quercus robur.

SIRA for carbon δ13C (ratio between 13C and 12C), hydrogen δ2H 
(ratio between 2H and 1H), nitrogen δ15N (ratio between 15N and 14N), 
oxygen δ18O (ratio between 18O and 16O) and sulfur δ34S (ratio between 
34S and 32S) was undertaken following the methodology first developed 
to check the origin of timber from concessions in Cameroon31 and 
finalized in the International Tropical Timber Organization project in 
2012 to develop and implement a timber tracking system with stable 
isotopes in Africa (ITTO PD 620/11 M). Afterwards, the methods were 
used for verifying the origin of oak from the USA32. The method includes 
the measurement of the isotope ratios of covalently bonded hydrogen 
after nitration as well (δ2Hnit). In addition, ball-milled, oven-dried wood 
powder samples were subject to X-ray fluorescence spectroscopy 
(XEPOS, SPECTRO analytical instruments) analysis to determine the 
relative abundance of 17 trace elements (Al, Si, P, S, Cl, K, Ca, Mn, Fe, Ni, 
Cu, Zn, Br, Rb, Sr, Ba and Pb). The instrument is composed of an X-ray 
tube with a thick binary Pd/Co alloy anode in combination with adaptive 
excitation, resulting in low background and low detection limits. For 
sample comparisons, normalized net intensities were used, obtained by 
deconvolution from the measured spectra. Normalized net intensities 
remove influences originating from potentially different calibrations. 
Intensities were normalized on a Compton-scatter region in the spectra 
as internal standard, which results in relative TE concentrations. This 
approach corrects for matrix effects as described, for example, by 
Anderman and Kemp33. Two scatter regions with different energies 
were used as a correction. Scatter region 1 (6.75–6.83 keV) was for the 
elements Al, Si, P, S, Cl, K and Ca, and scatter region 2 (19.71–20.55 keV) 

was for the elements Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb. As such, 
each tree sample therefore generated 23 chemical values to be analysed 
for comparative values at a given Global Positioning System point, rep-
resenting a substantial improvement in sophistication and robustness 
in timber-tracking data sets.

This dataset was supplemented with 24 timber reference samples 
from Russia which were collected in previous projects and obtained 
through Agroisolab GmbH. The same SIRA and X-ray fluorescence 
spectroscopy analysis was performed on these samples.

Data pre-processing
In the following sections, we used the notation yj = 1,…,m for the m = 20 
SIR/TE values. For the subsequent data analysis, Mn, Br and Ba were 
omitted due to a large proportion of missing values that were intro-
duced by the process outlined in the previous section. Furthermore, 
we found that TE values varied across several orders of magnitude 
between samples, so we applied a log transformation on the trace ele-
ment concentrations to stabilize the variance in the data and mitigate 
the impact of potential outliers.

Based on the spatial range of our collected samples, we defined a 
study area, denoted by 𝒳𝒳, consisting of coordinates x = (xlon, xlat) 
(expressed in longitude and latitude). It is defined as a rectangular grid 
consisting of equally spaced locations between 15° and 39.5° longitude 
and 46° and 68.3° latitude while taking into account the genus range 
of interest (that is, coordinates that are not part of a genus range are 
excluded). Genus ranges were extracted from publicly available data 
in Caudullo et al.34. We chose a resolution of 0.2° (~25 km), which 
allowed us to approximate spatial probability distributions with high 
accuracy.
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Fig. 6 | SHAP’s beeswarm plots for Quercus and Pinus. Latitude (left) and 
longitude (right) for Quercus on the first row and Pinus on the last row. The 
feature value on the y axis corresponds to the measured value for a particular 
variable (SIR/TE). The SHAP value on the x axis corresponds to the impact on the 

model output. Variables on the y axis are sorted in decreasing order of average 
absolute SHAP value and represent the average impact across all test samples: the 
higher, the more important the variable in question.
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Modelling of stable isotope ratios and trace elements
To tackle verification and determination, we used GP regression to 
model the spatial probability distribution of SIR and TE values inside 
the study area of interest. GPs are a powerful and flexible class of 
probabilistic models used in machine learning and statistics, both for 
regression and classification tasks. In this work, we used GP regression 
to estimate values at unobserved locations based on observations at 
nearby locations. Under a GP regression model, values of a variable 
measured at different spatial locations are assumed to be jointly nor-
mally distributed, with a covariance function specified by the model. 
This bears resemblance to kriging, a geostatistical interpolation tech-
nique commonly used in geoscience for spatial analysis35.

We fitted separate models for each genus we analysed. For every 
SIR/TE, we trained a GP regression model to predict its expected value 
at unobserved spatial locations. In essence, every GP regression model 
consists of three key components: (1) the prior mean function, for 
which we assume a constant value; (2) the covariance function, for 
which we use the Matérn function19 with separate scaling parameters 
for latitude and longitude in the determination model; and (3) the noise 
parameter. The selection of mean and covariance functions embodies 
our prior knowledge and modelling assumptions regarding the regres-
sion problem. The covariance function defines the similarity between 
data points in the spatial domain and allows GPs to capture different 
types of complex patterns and relationships in the data.

After training a GP regression model, we can predict the mean and 
variance for the jth SIR/TE value at a particular location x, which we 
denote by μ̂j(x) and σ̂2j (x), respectively. The predicted variance can be 
interpreted as the total uncertainty at location x and consists of alea-
toric uncertainty and epistemic uncertainty36. The former is linked to 
inherently random effects in the SIR and TE values. It stems from natural 
variability in the data and reflects factors that are beyond our ability 
to control. The latter arises due to gaps in our knowledge and under-
standing. In the context of our model, it reflects the uncertainty associ-
ated with our limited information about SIR and TE values at different 
locations and can be reduced by acquiring more data. For a more formal 
discussion about GP regression for spatial modelling, we refer the 
reader to Williams and Rasmussen19.

Verification
Ideally, a verification test should have high power in terms of detecting 
fraudulent cases while at the same time be reliable, in the sense of hav-
ing a low risk of false accusations. A principled approach, therefore, 
consists of designing a statistical hypothesis test that can be used to 
answer the following set of hypotheses for a new test sample (y∗1 ,… , y∗m) 
of a given genus with a territorial unit claim c:

H0 ∶ The test sample (y∗1 ,… , y∗m)

comes from territorial unit c.

H1 ∶ The test sample (y∗1 ,… , y∗m)

doesnot come from territorial unit c .

(1)

With a territorial unit considered as any possible spatial scale attached 
to a harvest location claim (for example, country, region, concession, 
plot…), the statistical hypothesis test should allow the user to control 
the type I error rate by means of the significance level α. It is the prob-
ability of rejecting the null hypothesis H0 when it is true (or the probabil-
ity of making a false accusation). The significance level allows the user 
to define a trade-off between the two important aforementioned cri-
teria, namely, reliability and power: the higher the significance level α, 
the lower the reliability, yet the higher the power of the test to detect 
fraudulent cases. In this work, we propose a statistical hypothesis test 
based on the Gaussian process regression model that was defined in 
the previous section. In particular, for a new test sample (y∗1 ,… , y∗m) of 
a given genus with territorial unit claim c and corresponding area 𝒳𝒳c 

(subset of study area 𝒳𝒳  consisting of locations in territorial unit c),  
we consider a composite hypothesis test of the form

H0 ∶ ∃x∈𝒳𝒳c∀j∈{1,…,m}y∗j ∼ 𝒩𝒩(μ̂j(x), σ̂2j (x))

H1 ∶ ¬H0

with 𝒩𝒩(μ̂j(x), σ̂2j (x)) a Gaussian distribution with mean μ̂j(x) and σ̂2j (x). In 
other words, under the null hypothesis, we assume that the jth ratio 
value for the test sample can come from any location in the territorial 
unit area 𝒳𝒳c. To reject the declared origin, we must thus reject every 
location in 𝒳𝒳c. Furthermore, as we assume independence between 
different stable isotopes and trace elements, under H0 we have that

S(x) =
m
∑
j=1

(y∗j − μ̂j(x))
2

σ̂2j (x)

is a sum of independent squared standard Gaussian distributions, 
which follows a chi-squared distribution with m degrees of freedom 
for some x ∈ 𝒳𝒳c. As rejecting the null hypothesis amounts to rejecting 
for every point in 𝒳𝒳c, we take a maximum of P values across the claimed 
territorial unit area (ref. 37, chap. 10):

p = max
x∈𝒳𝒳c

[1 − F(S(x))] ,

where F is the cumulative distribution function of a chi-squared distri-
bution with m degrees of freedom.

Determination
In contrast to verification in the previous section, the goal in determina-
tion is to predict the timber harvest location of a new test sample from 
a particular genus. We propose a Bayesian determination model based 
on GP regression. For a test sample y∗ = (y∗1 ,… , y∗m) and m trained GP 
regression models (‘Modelling of stable isotope ratios and trace ele-
ments’), the posterior probability of a location x ∈ 𝒳𝒳 is calculated by 
means of applying Bayes’ rule:

Pr[x | y∗] = ℒ(y∗ | x)Pr[x]
∑x′∈𝒳𝒳ℒ(y∗ | x′)Pr[x′]

, (2)

where the likelihood function is given by:

ℒ(y | x) =
m
∏
j=1

ϕ(yj | μ̂j(x), σ̂2j (x)) ,

with ϕ(. ∣ a, b) the probability density function of a Gaussian distribu-
tion with mean a and variance b. For the prior distribution Pr[x], we 
consider a uniform prior for locations x ∈ 𝒳𝒳 that are within a range of 
300 km to the reference data, and a zero prior elsewhere. The rationale 
behind this prior is to restrict determination to regions containing 
reference data. The posterior probability in equation (2) denotes the 
(posterior) probability that the test sample y* originates from location 
x ∈ 𝒳𝒳. After calculating the posterior probability for every location in 
the study area 𝒳𝒳, we report the predicted timber harvest location and 
the 95% confidence region for every test sample y*. The former corre-
sponds to the location with highest posterior probability. The latter 
corresponds to the smallest set of locations whose posterior probabil-
ity is at least 95% according to the model. Confidence regions are 
equivalent to credible regions in Bayesian statistics and correspond 
to regions within which the true location falls with 95% probability38. 
The interpretation is that there is a 95% probability that the true timber 
harvest location lies within the 95% confidence region, given the evi-
dence provided by the observed data. Note that the confidence region 
is constructed based on the posterior distribution in equation (2) and 
therefore depends on the prior Pr[x], the likelihood ℒ( y∗ | x)  of the 
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observed data and model correctness. To gain further insights in the 
95% confidence regions, we have conducted additional experiments 
showcasing the efficiency and coverage of the predicted 95% confi-
dence regions, obtained on the test samples (Section 2 in Supplemen-
tary Information).

To quantify the relative influence of different SIR and TE on the 
accuracy of timber harvest location determination, we calculated 
SHAP values for the mode of the posterior distribution in equation (2)  
(ref. 39). Given SIR and TE values and a determination model (that is, 
mode of the posterior distribution), SHAP approximates the determi-
nation model. By means of the approximation, a SHAP value, which 
represents the marginal contribution of a given stable isotope or trace 
element value to the output of the determination model, is calculated. 
The SHAP value is analogous to the Shapley value in cooperative game 
theory and offers a principled approach for interpreting the contribu-
tion of specific stable isotopes and trace elements for timber harvest 
location determination.

Experimental set-up
We trained and validated three different determination models for 
every genus by means of fourfold cross-validation on the reference 
samples. In particular, we considered determination models based 
on (1) SIR data only, (2) TE concentration data only and (3) a combi-
nation of both data types. For every training iteration, we standard-
ized the SIR and/or TE values and estimated the parameters of the GP 
regression models, along with the noise parameter, by maximizing 
the likelihood on the training fold. This approach stands in contrast 
to traditional kriging approaches in the geostatistics literature, which 
rely on approximate techniques based on summary statistics. We used 
Adam optimization with a learning rate of 0.01 and the Stochastic 
Gradient Descent with Warm Restarts scheduler and early stopping 
with a patience of five iterations40,41. In terms of performance for all 
determination models, we report the average and standard deviation 
of the great-circle distance between true and predicted locations, 
averaged over all test folds.

In another set of experiments, we highlighted how insights can 
be derived from SHAP values regarding the impact of SIR and TE val-
ues on determination. To this extent, we used 80% of the reference 
samples for training GP regression models for all SIR and TE values, 
as outlined above. The remaining samples were then used as test sam-
ples for which we constructed determination maps by calculating the 
posterior probability in equation (2) for every point in the study area. 
For the sake of interpretation, we report 95% confidence regions, that 
is, sets of locations whose total posterior probability exceeds 95%. In 
addition, we also present uncertainty maps for all genera by calculat-
ing, for every location in the study area, the logarithm of the product 
of predicted variances for all SIR and TE values (‘Modelling of stable 
isotope ratios and trace elements’). When it comes to the SHAP analysis, 
we calculated SHAP values on the test set and present beeswarm plots 
for every genus39.

We used the same cross-validation and grid set-up to evaluate the 
performance of our verification procedure. Due to space constraints, 
we focus on Betula samples. For every test sample y = (y1, …, ym) and 
every country c in the study, we tested the hypothesis that y originates 
from c. The set of within-country locations 𝒳𝒳c is defined as the set of all 
grid points within country c for all countries except Russia and Ukraine, 
where we only have samples from several regions. For those countries, 
we defined the set of allowed within-country locations as the set of grid 
points within the level-1 administrative subdivisions from which we 
have samples. For each country, we report the following: (1) specificity 
(the probability of not rejecting a correct origin claim) and (2) sensitiv-
ity (the probability of rejecting an incorrect origin claim). We also 
report the overall accuracy for each combination of true and claimed 
origin. In all cases, a claim is rejected whenever the P value is lower than 
α = 0.05.

To investigate the impact of the scale of claimed locations on 
verification accuracy, we repeated the verification analysis at differ-
ent spatial scales (Section 1 in Supplementary Information). For each 
simulated incorrect country claim, we randomly sampled a location 
within that country and identified the territorial unit corresponding to 
the location. For correct country claims, territorial units corresponding 
to the true location were used. We then performed verification tests 
at the level of territorial units. Three spatial scales were used: level-1 
administrative units and simulated forest concessions of size 0.5° × 0.5° 
and 0.25° × 0.25°, respectively. We reported sensitivity and specificity 
as in the country-level analysis. All experiments were performed in 
Python (version 3.10.9) using the GPyTorch (version 1.10), PyTorch (ver-
sion 1.13.1), Scikit-learn (version 1.2.1), SHAP (version 0.41.0), Skorch 
(version 0.12.1) and matplotlib (version 3.5.0) libraries39,42–46.

Availability of materials
The wood samples are part of the World Forest ID Georeferenced Sam-
ple Collection. For access enquiries, please contact the corresponding 
author.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Due to the sensitive nature of the data, the SIRA and TEA data are avail-
able upon reasonable request.

Code availability
The code is available upon request at https://zenodo.org/records/ 
10055203.
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